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ABSTRACT

We have developed a combined feature based and shape based
visual tracking system designed to enable a planetary rover to
visually track and servo to specific points chosen by a user
with centimeter precision. The feature based tracker uses in-
variant feature detection and matching across a stereo pair,
as well as matching pairs before and after robot movement
in order to compute an incremental 6-DOF motion at each
tracker update. This tracking method is subject to drift over
time, which can be compensated by the shape based method.
The shape based tracking method consists of 3D model regis-
tration, which recovers 6-DOF motion given sufficient shape
and proper initialization. By integrating complementary al-
gorithms, the combined tracker leverages the efficiency and
robustness of feature based methods with the precision and
accuracy of model registration. In this paper, we present the
algorithms and their integration into a combined visual track-
ing system.
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1. INTRODUCTION

Goal level, single cycle activity commanding for planetary
rovers requires a high degree of robotic autonomy. The 2009
Mars Science Laboratory (MSL) rover will be required to
navigate to a scientifically relevant feature from a distance
of 10 meters away and place a contact instrument within 1
cm of the specified location. This capability will require the
rover to track specified points with centimeter precision and
servo directly to them.

Vision based approaches to tracking selected targets are at-
tractive because cameras are relatively inexpensive, reliable,
useful for a variety of navigation, science, and situational
awareness problems, and have a history of space flight. Past
and current Mars rover missions have included many cameras
onboard. Current plans for MSL include imaging capabilities
similar to the Mars Exploration Rovers (MER).
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Numerous approaches to visual tracking have been published
over the past few decades. Some methods track object con-
tours. Contour based methods include active snakes[1], [2]
and recursive Monte Carlo filters (CONDENSATION)[3].
These methods are particularly useful for deformable or ar-
ticulated objects.

More popular are tracking approaches which match local ap-
pearance templates in order to track points or regions. These
approaches often make use of exhaustive search for appear-
ance templates using cost functions such as normalized cor-
relation, sum of squared differences (SSD), and sum of abso-
lute differences (SAD)[4]. Other methods apply optimization
techniques to recover template motion and appearance mod-
els with low dimensional parameterizations (such as rigid or
affine warps) using gradient information[4], [5], [6].

Current standard visual tracking techniques may not be suf-
ficient for enabling MSL autonomy needs. Because science
targets are selected for scientific relevance, they are not nec-
essarily those features which best facilitate appearance based
visual tracking. Investigation into finding features which
do facilitate tracking has resulted in some commonly used
heuristics for detecting corners or other interest points[7],
[8]. These points are often useful for tracking as an input
to such tasks as camera self-calibration or structure from mo-
tion (SFM) where the specific points tracked are ancillary to
the parameters of interest (camera parameters and/or cam-
era motion, scene structure, etc.) More recently, there are
new classes of interest point detectors which also include
low dimensional appearance models which represent the re-
gion around an interest point with a small number of param-
eters[9], [10], [11] for point matching, object recognition, or
image retrieval. These interest point detector and descriptor
algorithms provide a fast method for finding corresponding
points in images, but again these points will not necessarily
coincide with features of interest to a remote scientist.

Many approaches to 3D model registration have also been re-
ported. Most currently popular methods are derived from the
ICP algorithm[12], [13], including improved distance mea-
sures[14] and the use of robust statistics and nonlinear opti-
mization[15]. We have reported our own fast 3D registration
algorithm earlier[16] which is based on optimizing a repro-
jection error between two different virtual range sensor views
of a 3D reconstruction of an object from stereo.



In this paper we will describe a new visual tracking system
which uses interest point detection and matching[10] to reg-
ister 3D points in an unstructured environment. In conjunc-
tion with an assumption of a rigid and static environment,
this tracker can maintain an estimate of the location of an
arbitrary point in the environment, even when that point is
difficult or impossible to visually track. This also provides
robustness to occlusion or dramatic changes in lighting such
as cast shadows. Because the tracker is subject to drift, we
have integrated it with our 3D model registration approach
to cancel out tracking drift. This registration step aligns the
target rock with the view from which a scientist chose the
instrument placement location, reducing the tracking error.

Section 2 describes in more technical detail the feature based
and shape based trackers as well as their integration into a
single combined system. Section 3 describes some results
acheived in a set of single cycle instrument placement tests
and demonstrations on the K9 rover at NASA Ames Research
Center. Section 4 discusses these results and some future
work.

2. A TALE OF TWO TRACKERS

Our robot navigation and instrument placement system uses
two vision based tracking methods. The first tracker is fea-
ture based, using fast invariant feature detection and matching
with robust motion estimation. The second is shape based,
using a slower dense 3D model registration procedure. Our
combined tracker takes advantage of both of these methods
to provide an integrated visual tracking infrastructure which
is fast and robust during a traverse, and can provide bounded
error at the end of a target approach. Both of these tracking
methods make the assumption that the target and the scene
around it do not change, i.e. that the world is physically static.
Lighting conditions may change, since our system may oper-
ate autonomously for a few hours. Each of these trackers is
explained below.

Feature based tracker

Many feature based trackers operate by matching a chosen
template to an area of interest in successive images. The
search is often done using an exhaustive correlation or con-
volution, which can be expensive when precise predictions
are not available or large camera motions must be tolerated.
These trackers may offer the user the flexibility to specify
the template, but the specified template may not be amenable
to tracking due to low visual texture or changing appearance
during motion. In addition, if the tracker only keeps track of
one nominal target point, it is brittle in the event of a mis-
match, and vulnerable to occlusions or changing viewpoints
or other physical constraints.

The appearance based tracking algorithm used in our sys-
tem uses large numbers of image features matched across
stereo pairs. Feature matching is done using the SIFT algo-
rithm[10]. The SIFT algorithm consists of two steps. The first

step is the extraction of interest points from an image. Interest
points are local maxima in scale space, found by searching for
points in a Laplacian image pyramid[17] with higher values
than neighbors in z,y and the scale dimension. The interest
operator used by SIFT is invariant to rotation, translation, and
spatial scale[10]. Once these interest points are found, a local
orientation is estimated. The local image patch is then used
to compute a feature vector, or descriptor, which is computed
using some edge statistics in the neighborhood of the interest
point, where the neighborhood is defined by the location, ori-
entation, and scale recovered by the interest operator. This
means that a large number of interest points are identified
in image pairs under Euclidean or approximately Euclidean
transformations in the images. The descriptors also tend to
be fairly robust, so that a nearest neighbor search in feature
space tends to find a large number of matched points in two
images.

Our 3D SIFT based tracker uses features extraced from four
images—two stereo pairs—to recover the incremental motion
of the tracked target in the robot coordinate frame. We re-
fer to one stereo image pair as {L;, R;}. From these images
the SIFT algorithm extracts and matches features {l;, r;} be-
tween the images, providing matched pairs of image points
z = (IF,rI)T. The 3D location x; corresponding to the
matched pair z; is recovered through stereo, which for nota-
tional convenience we will refer to as a function

Ty = f(Zz) (D

By convention, the SIFT descriptor for the left image point
l; is taken as the descriptor for the 3D point z; to facilitate
matching over time.

When the next image pair { L;11, R;+1} is acquired, matched
features zi41 = (I,;,7} ;)" are found and 3D points
xiy1 = f(zi+1) are recovered. Using the SIFT descriptors
from z; and x;4, putative matches can then be found be-
tween the 3D points extracted before and after robot motion.

Once a set of putative 3D point matches are found, we es-
timate the 6-DOF transformation from one view to the next
using Horn’s method[18] and RANSAC[19]. Horn’s method
will find the least mean square rotation and translation be-
tween a set of matched points in closed form[18]. However,
because Horn’s method minimizes a second order cost func-
tion, errors (outliers) in SIFT matching either between im-
age pairs or between the 3D points can cause arbitrarily large
errors in the recovered transformation parameters. To iden-
tify and eliminate outliers we use the robust estimation algo-
rithm RANSAC]19] to find the transformation that is consis-
tent with the largest number of inliers.

) L)

Inliers are defined as those putative matches {z;"’, z;;

such that
K2

|, — TP < 7 )

where 7 is a threshold. Currently we use 7 = 3 cm and re-
peat the RANSAC loop for M = 100 times using 3 puta-
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Figure 1. SIFT based tracker diagram

tive matches in each trial, which takes negligible time since
Horn’s method is very fast. RANSAC returns the transfor-
mation with the largest consensus, and the list of matches in
the consensus set. To further improve the estimate we use
the consensus set to re-estimate the transform with all inliers.
If the set of inliers changes with the improved transforma-
tion, we continue to re-estimate the transform until the con-
sensus set converges. We denote the resulting transformation
by Tf“* and the inlier set by J. The steps above are also
shown in Figure 1.

Once the rigid transformation Tf“* is computed, the tracked
feature location is simply updated by applying the transfor-
mation to the target location

1 idde
gt =T g (3)

Note that mismatches may occur in two different steps in the
tracking algorithm. Mismatches between [; and r; will lead
to erroneous coordinates for x;. Mismatches between points
:cgj ) and xgi)l will lead to 3D point pairs which are not con-
sistent with a single rigid body motion. Both of these kinds
of outliers are handled by the robust absolute orientation. No
explicit outlier rejection is needed in the 3D feature extraction

prior to solving for absolute orientation.
Uncertainty

As the feature based tracker tracks a science target, two mea-
sures are used to estimate the performance of the system. The
first is the uncertainty in the target location represented by a
3 X 3 covariance matrix over the XYZ location of the tracked
feature, which is useful for geometric reasoning about the
precision of the target location estimate for camera pointing
and target handoff. The second is a single number represent-
ing a qualitative, overall confidence measure for the tracker
which is useful for planning and execution purposes and de-
tecting tracking failures online.

The tracker uncertainty takes into consideration the initial tar-
get location specification as well as compounding the uncer-
tainties in all of the tracker updates. The initial target location
uncertainty is computed assuming a half-pixel standard devi-
ation in the user specified location in the reference camera
image, as well as an uncorrelated half-pixel standard devia-

tion in the stereo disparity matching in the other stereo cam-
era. The initial location and its covariance matrix are found
by taking the unscented transform[20] of equation (1) above
with zo = (II', 78T and

P., =0Tgx4 4)

with 0 = 1/2 to yield the 3D location ¢ and 3 x 3 covariance
matrix P,.

At each tracker update, the RANSAC method above is used
to find the set of inlying matches that can be used to compute
the dominant rigid transformation. However, Horn’s method
returns only a point estimate, without any information about
the uncertainty in the estimate. In order to compute the co-
variance of the estimator, we use bootstrap[21]. Analytic ap-
proaches to propagating uncertainties through Jacobians of
the norm minimized by Horn’s method do exist[22], but the
non-parametric approach we use is theoretically sound, triv-
ial to implement, and makes significant reuse of the estimator
code already implemented.

Bootstrap is a Monte Carlo method. To compute a bootstrap
estimate of the covariance of the absolute orientation esti-
mate, we generate a population of matched point sets from
the inlier set J by sampling with replacement to yield B
bootstrap sets {7, J2,...,JB}. For each set of matches
J°, we compute the transform 7?? using Horn’s method and
recover the transform parameters #°. Our current implemen-
tation recovers translation and Euler angles', but other rota-
tion representations are equally feasible. From the population
of estimates #°, an empirical covariance is computed,

B
Py = %Z(@b = 070" - o))" ®)
b=1
where 0} is the transform parameters corresponding to the
optimal estimate TZH*. The covariance matrix for the up-
dated location of the feature is then given by an unscented
transform on the update

zitt = T(0)x) (6)

with z}) and P!, from the previous tracker update, and 6}
and Pge from Horn’s method, RANSAC, and bootstrap. The
notation 7'(#%) indicates the rigid transformation parameter-
ized by the rotation and translation parameters §°. Note that
because tracking is done in an incremental fashion, the co-
variance P, is monotonically growing during a tracking run,
i.e. the tracker accurately models the fact that incremental
updates with small errors will compound into a larger drift
over time. Our system typically has incremental errors on the

LEuler angles can present problems due to singularities, and may not be
amenable to representation by a Gaussian (mean and covariance). However,
this work is applied to a surface rover with limited roll and pitch angles,
avoiding the singularities in the representation, and the absolute orientation
estimates tend to be highly overconstrained and yield very small covariance
matrices, so the representation only needs to be accurate over a small neigh-
borhood of the parameter space.



Figure 2. Uncertainty in the 3D coordinates of the initial
target selection due to stereo errors

order of millimeters and milliradians per tracker update, so
that a single target approach with roughly 10 tracker updates
accumulates only centimeters of error. The 3D model regis-
tration step described below is designed to recover from this
potential drift.

In addition to the geometric uncertainty in target location rep-
resented by the covariance matrix P!, the tracker maintains
a single confidence value as a qualitative measure of how
well the target is being tracked. This number is computed
assuming a simple function of the number of inliers found by

RANSAC above, that is the confidence C is given by
C=1/(1+eIT1=M)) (7)

where through experimentation we have set N = 30, and
a = 0.1. This confidence measure reflects the fact that if
fewer than NNV inliers are found, then the tracker uncertainty
should be low while if significantly more inliers are found
then the tracker confidence should be high.

These confidence measures are somewhat ad hoc, but are only
intended to capture some useful qualitative information about
tracker performance. The confidence is used by the onboard
executive to determine when the risk of losing a target is high
enough to warrant a change in activity, e.g. to approach a dif-
ferent target with higher expected utility. In our experiments
the tracker tends to either find a large number (hundreds) of
matches or very few, and the overall system typically does
what the rover operators would expect by identifying track-
ing failures and aborting when necessary.

Starting with the target location 966, covariance matrix P,
point locations x; and descriptors d; from the previous time
step, the tracker update proceeds as follows:

1. Find matching SIFT features /; 1 and ;41
2. Recover point locations x ;41
3. Find putative matches between x; and x;1
4. Repeat M times:
(a) Choose 3 putative matches at random
(b) Find rigid transformation Tiile
(c) Find the number of inliers (consensus)
5. For the best consensus set 7,
(a) Compute 0* using matches J

Figure 3. Tracker result with confidence interval shown as
an ellipse around the tracked point. The tracker was
initialized with the upper left corner of a fiducial on a rock.
Note that the fiducial was not explicitly used in the tracking,
but placed to facilitate performance evaluation.

(b) Find inliers [ under transform 7'(0*)
(c) If inlier set changes, repeat
6. Compute confidence C based on | 7| using (7)
7. Compute Pyy using Bootstrap
8. Compute 2" and P/} using (6)
9. Return zj;"', Pi! and C

3D shape based tracker

The 3D shape based tracker uses terrain model registration to
recover 6-DOF motion from stereo cameras. Tracking is per-
formed by registering successively acquired terrain models of
the target area to the initially acquired model of the target. By
using an initial target template throughout the tracking cycle,
successful registration to the current view at each step pro-
vides an an estimate of the goal location that does not drift
over time.

For every pixel in the left camera image for which a corre-
spondence is found in the right camera image, our stereo al-
gorithm estimates the depth to that point. These depth esti-
mates are combined to produce a 3D model of the surface. If
two models of a surface are made from different locations, the
rigid transformation that aligns the two models can be used to
determine the coordinate transformation between views.

The surface models are represented by triangulated meshes
with verticies v and v'. If the two 3D models contain some
region of overlap, there is a rigid transformation that aligns
the overlapping regions. We represent the rigid transforma-
tion using the parameter vector p = (z,y, z, a, 3,v)T corre-
sponding to 3 translational and 3 rotational degrees of free-
dom. These parameters define a transformation matrix T'p.
If p is the parameter describing the transformation between
surfaces v and v, then for every pair of corresponding points
v; and v/, the relationship

vi—Tpv; =0 (8)

holds. With real observations this equality will not hold ex-
actly.



Figure 4. Each pixel in the range image is predicted by
rendering the corresponding mesh facet into a virtual range
Sensor.

Our mesh registration approach projects these two models
into a virtual range sensor view and minimizes the difference
between the rendered depths at each point. The rendering
takes O(n) operations, where n is the number of pixels in the
virtual range sensor. For each triangle on the mesh v’, the
vertices v;, v7, and v} are projected onto the image plane.
For every pixel inside that triangle, the location of the inter-
section of the camera ray c, and the facet of the mesh is a
point s}, given by

s, = ;v + ozjv; + vy, 9)

with a;; + aj + a, = 1. The depth to the intersection point is
the z coordinate in the camera frame,

zi =N, 8] (10)
The vector of all depths z; is denoted z. The surface model

v’ does not move during registration, so z is a constant.

The depth to the point v; changes with transformation p.

Tp(;vi + ajv; + agvi)
hi(p) = nc-s; (1D

We define a robust objective function which is the sum of the
absolute deviations between the projected depths:

J(p)=>_ |hi(p) — zi| (12)

Because the J(p) has a local minima, we first perform a
coarse correlation search in order to narrow down the loca-
tion of the best solution. Our initial estimate of p, po comes
from the stereo SIFT-based tracker described earlier. Con-
sider that p is decomposed into rotational component r and
a translational component t. Furthermore, consider that t is
decomposed into:

t = xcx +ycy + zc, (13)

where cx and cy are in the plane of the virtual range sen-
sor, and ¢, is the pointing direction of the sensor. Because a

(b)

(d)
Figure 5. Registration result: (a) hazcam image (b) range
image (c) depth error after range image correlation (d) depth
error after nonlinear optimization

search over the 6 dimensions of p is expensive, we make a
few approximations.

For small changes in t, hi(z,y,z + Az,r) ~=
h;i(x,y,z,r) + Az. In other words, a change in transfor-
mation along the z-axis of the virtual range sensor by some
distance Az changes h; by approximately the same amount.
Our initial estimate of r is approximately correct.

These two approximations allow us to perform the correlation
search across only two dimensions; the x-axis and y-axis of
the virtual range sensor.

For every Ax and Ay searched, the transformation p is com-
puted by translating initial estimate po by Az and Ay and by
translating in the directions of the x-axis and y-axis of the vir-
tual range sensor. The correction Az to zy which minimizes
the objective function J(xg + Az, yo + Ay, 20 + Az, rg) is
calculated as follows:

Az = median(hi(zo + Az, yo + Ay, 20,T0)) (14)

As described above, the correlation search uses approximate
knowledge of the three orientation parameters to search only
over the sensor x and y coordinates, solving for the average
difference in z. Once the correlation search finds an approx-
imate solution, we optimize over all 6 rigid transformation
parameters using Nelder Mead[23], which is a general local
nonlinear optimization method. Nelder Mead only requires
a cost function, not any derivative information, so the cost
function in equation (12) is used directly. In order to avoid
problems with early termination[23], we restart the Nelder
Mead optimization twice after it converges. Figure 5 shows
an example result of the depth error after Nelder Mead con-
verges.



3. RESULTS

We ran the combined tracker through a simple test scenario
on the K9 rover[24] in the NASA Ames Marscape. The test
scenario was repeated over the course of September 22nd and
23rd, 2004. In the scenario, an operator selects three tar-
gets such that the straight-line distance from the rover’s arm
workspace at the starting position to the targets are approxi-
mately 5, 7.5, and 10 meters. The rover is then commanded to
navigate to each of the targets in turn, while tracking their lo-
cation with the combined tracker. The rover avoids obstacles
using the CLARAty[25] navigator package, which is based
on the Morphin algorithm[26].

After the rover arrives at each of the rocks, it is commanded
to move its arm such that the CHAMP[27] camera contacts
the rock as close as possible to the tracked target location.
The instrument placement code analyzes the scene before the
arm is moved, to determine the closest point on the rock that
is safe for the CHAMP to touch, and plans a collision-free
path for the arm.

Tables 1 and 3 show the results for these two days of testing.
For each target, we record the elapsed time of the traverse
(which can be large if several obstacles have to be driven
around), the accuracy of the target as tracked by the feature
based tracker relative to 3-D models generated by the same
camera pair as is used in the tracking, and the accuracy of the
3-D shape-based tracker used for handoff from one pair of
cameras to another. The placement accuracy is also recorded,
though the placement error can be arbitrarily large since the
system places a higher priority on safety than on accuracy of
placement. Placement figures are not available for Septem-
ber 22nd; a motor failure in one of the arm joints prevented
successful placement.

The only failure in tracking occured in the feature based
tracker for the second rock on September 23rd. In this case,
the tracker failed just as the rover approached the rock and in-
troduced a large cast shadow into the scene. Once the tracker
was unable to find a transformation between subsequent im-
ages, it stopped updating the target location and fell back to
dead reckoning. After the navigation was finished, the shape-
based tracker was able to recover the target with accuracy
comparable to the other experiments.

Target 1 (5m) 2(7.5m) | 3 (10m)
Time to reach target | 21 mins | +42 mins | +17 mins
Tracker accuracy 0.68cm | 0.29 cm 1.3cm
Hand-off accuracy | 0.5cm | 2.7cm 1.7 cm
Placement accuracy | N/A N/A N/A

Table 1. 9/22/2004 Performance

4. CONCLUSIONS

We started this work in an effort to increase the reliability of
our previous system, which was based largely on the shape

Target 1

Target 2 Target 3

Table 2. 9/22/2004 Tracker

Target 1 (5m) 2(7.5m) | 3 (10m)
Time to reach target | 25 mins | +27 mins | +23 mins
Tracker accuracy ~0.3 cm | failed 1.7 cm
Hand-off accuracy 1.3cm ~1.6cm | 32cm
Placement accuracy | ~6.3cm | ~llcm | ~3cm

Table 3. 9/23/2004 Performance

based method alone. We found that the shape based method
was quite reliable so long as the initial estimate of the tar-
get location was not incorrect by more than approximately
half the width of the rock being tracked. Unfortunately, dead
reckoning errors often led to our initial estimates being be-
yond this error.

Once we started developing the feature tracker based on SIFT,
we found that it was reliable enough to use as the primary
tracker in our navigation system, because the cumulative er-
ror over a traverse of less than 10 meters was typically well
within the half-rock tolerance that the shape based tracker
generally requires. We decided therefore to use the shape
based tracker only as the last step, to hand the target off from
the long-range cameras used for approach to the front cam-
eras used for manipulation and instrument placement. Using
the shape based tracker as the last step ensures that the rover
is indeed using the same point on the designated rock for in-
strument placement as was initially chosen by the operators,
since this point is chosen relative to another 3-D mesh of the
rock, rather than relative to the rover or to another arbitrary
coordinate frame. Since this change in usage, we’ve found
the system to be quite reliable. The two components have
complementary strengths that yield a robust tracking system.

Since the experiments outlined in section 3, we have demon-
strated the system operating several times, often tracking as
many as five targets as the rover moves. To this point, we have
executed at least one run where the rover has navigated to five
targets in turn, and placed the CHAMP on each of the rocks
with very little tracking error. In some instances the feature
based tracker has lost the target due to occlusions, and was
able to reaquire the target after the occlusion was removed.



Target 1

Table 4. 9/23/2004 Tracker

The fact that the tracker is able to provide a confidence mea-
sure allows the rover to fall back to dead reckoning if the
confidence drops, and allows the rover’s executive to change
the course of action entirely if a target is lost. The tracker
performs so well, however, that we typically have to intro-
duce failures into the system in order to test the ability of the
executive to cope with tracking failures.

The combined tracking system is capable of tracking user-
specified points for robotic navigation with centimeter level
accuracy over distances on the order of ten meters. This track-
ing system is a critical component of the integrated single cy-
cle instrument placement work demonstrated at NASA Ames
Research Center.
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